

AVT-369 Research Symposium on "Digital Twin Technology Development and Application for Tri-Service Platforms and Systems"

Digital Twins in the Context of Digital Transformation

Curtis RichardsonRandall AllenbachBruce GabelWilliam GoheenDarwin Petersen

Spirit AeroSystems, Inc. / U.S.A.

October 12, 2023

Spirit AeroSystems

- Background & Introduction
- Spirit's Digital Twin Progression
- Floor Beam Assembly
 - Automated Beam Line
 - Floor Beam Assembly 2.0
 - Floor Beam Assembly "2.5"
 - Digital Twinning Lessons & Improvements
- Spirit ONE™
- Questions

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Spirit AeroSystems

Global Aerostructures Leader

18,000 employees & 20M ft² Across 12 Global Sites

\$48B Backlog Across Multiple Customers & Platforms

Balanced Capabilities

AVT-RWS-354

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Spirit AeroSystems

18,000+ commercial employees across 12 global locations | 20 million square feet

AVT-RWS-354

NATO UNCLASSIFIED + STO EOP

Slide 4

Introduction

• Level set on definitions

> AIAA / AIA Digital Twin: Definition & Value (2020)

- Full: A set of virtual information constructs that mimics the structure, context and behavior of an individual / unique physical asset, or a group of physical assets, is dynamically updated with data from its physical twin throughout its life cycle and informs decisions that realize value.
- **Simplified:** Virtual representation of a connected physical asset.

Essential characteristic is existence of the physical asset. Lacking that, you simply have a nominal digital representation.

>> A major theme throughout Spirit's experience <<

Our Digital Twin Progression

- Digital Twin in context of P³...
 - → Products → Processes → Production System
- Early focus on digital part modeling (CAD)...
 ...with subsequent focus on factory data ("connect & collect")

ACTION		EFFECT
Connect Systems	=	Data Collection
Analyze Data	=	Information
Synthesize Information	=	Knowledge
Act on Knowledge	=	Closed-loop Control

Our Digital Twin Progression

- Production System Digital Twin: Smart Factory Fabric
 - > Floorsight
 - ➢ OptiCrew

Constraint Command Center

Resulting in...

- ~20% hours/unit reduction
- ~10% throughput improvement
- ~25% variation reduction
- ~20% inventory reduction & ~40% accuracy improvement
- ~10% machine utilization improvement

Our Digital Twin Progression

- Digitally modeling transformation for a high-rate application
- Pseudo-concurrent digital iteration of...
 - Product configurations
 - Manufacturing processes
 - Production system concepts

Continuous digital twin production operation

Automated Beam Line

• **Mission:** Transform a fuselage floor beam sub-assembly production area from mostly-manual, batch process to mostly-automated, takt-based hybrid single-piece flow line

• Application complexities

- Variety: minor models, customer options, qty/shipset
- Engineering definitions (recipes)
- Consumption by downstream customers

Automated Beam Line

- Floor Beam Assembly 2.0
 - > A path-finder to investigate & demo Industry 4.0 capabilities
 - Ground rule constraints
 - No engineering design changes to the parts
 - New production process to be introduced as greenfield line
 - Focus on three primary forms of modeling
 - 1. Discrete event
 - 2. Physical processes
 - 3. Data processes

• Discrete Event Modeling

- Takt-based hybrid single-piece flow line concept
- Station-by-station, relatively low fidelity
- > Many upfront assumptions not updated over time

DES: First of multiple digital orphans

• Physical Process Modeling

- > CAD 3D layouts relatively commonplace; process models less so
- Considered: station ergonomics, part handling/conveyance

- Data Process Modeling: Facilitation
 - > Data & data flow became engine that drove the line
 - Crucial to leverage legacy data sources, derive digital work instructions, dynamic orchestration
 - Automated Work Instruction (AWI) authoring

AVT-RWS-354

- Data Process Modeling: Planning
 - Step 1: Funnel engineering data into intended MBD end-state, storing in a repository
 - Step 2: Data content normalized into Spirit data model, stored in graph database
 - Step 3: Integration with knowledge management system

- Data Process Modeling: Execution
 - Large-scale SCADA integrates with all physical elements

• Lessons from production ramp-up

- Assembly variant complexities
- Initial DES not discrete enough
- Pervasive digital orphans
- True virtual commissioning had not been accomplished

Siloed digital models ultimately of limited use

- Improvements planned & in-work
 - Updated CAD reflects as-installed equipment, workcell configs
 - Stakeholder team collaborating on development of enduring, standardized discrete event model

• Improvements planned & in-work (con't)

Implement Spirit standard IIoT platform focused on data collection

- Most ABL assets connect to IIoT platform through PLC controller
- Robot, machine CNCs connect via intermediate OPC UA server

AVT-RWS-354

Spirit ONE[™]

- Spirit's enterprise digital transformation initiative
 - Establish integrated digital way of working
 - Interaction across business, engineering, manufacturing processes
 - Scope: global internal AND multiple external customers, suppliers
 - Federated Enterprise Architecture
 - Assure success of digital twinning with total stakeholder integration
 - Enterprise Analytics turned into
 Enterprise
 Intelligence

AVT-RWS-354

NATO UNCLASSIFIED + STO EOP

Slide 19

Spirit ONE[™]

- Spirit's enterprise digital transformation initiative
 - > Factors of Merit PLM trade study; quantify value of OOTB IDE
 - Resulting strategy specific to Spirit's role:
 - Tier 1 supplier
 - Array of major customers
 - Commercial, defense & space, MRO market segments

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Questions?

AVT-RWS-354

NATO UNCLASSIFIED + STO EOP

Slide 21